Cassava Leaf Disease detection
system using Azure Al ,
Container Apps and Cosmos DB

Problem Statement

We implement a Cassava Leaf Disease detection system.

Cassava is a rich, affordable source of carbohydrates. It can provide more calories per acre of the
crop than cereal grain crops, which makes it a very useful crop in developing nations.

As the 2nd largest provider of carbohydrates in Africa, cassava is a key food security crop grown
by small-holder farmers because it can withstand harsh conditions. At least 80% of small-holder
farmer households in Sub-Saharan Africa grow cassava and viral diseases are major sources of poor
yields.

We have taken 105 images for 5 categories,4 leaf disease categories[cbb,cbsd,cgm,cmd] and a
healthy category. The Cassava Leaf Disease detection system would help the farmers to detect the
disease correctly and take preventive measures for the same.

A successful output for an unseen cbb disease image is shown with 99.93% probability for cbb
diseased leaf

Cassava Leaf Disease

Predictions

Prediction for train-cbb-378.jpg

chb : 0.99933416

chsd : 0.00061068207

cgm : 4.397634e-05

healthy : 6.0237385e-06

Successful predictions in table format
Cassava Leaf Disease

All Predictions Predict All Predictions

All Predictions in Percentages

FileName

|

| Filter |

FILENAME CBB CBSD CGM CMD HEALTHY

train-cbb-378.jpg 99.933 0.061 0.004 0.001] 0.001
train-cbb-307 jpg 57.384 42.572 0.002 0.0 0.042
train-cbb-413.jpg 100.0 0.0 0.0 0.0 0.0
train-cgm-14.jpg 0.0 0.0 99.998 0.0 0.001
train-cgm-538.jpg 0.007 0.073 5.707 94.21| 0.003
train-cgm-599.jpg 0.018 0.0 99.977 0.004 0.0
train-cgm-589.jpg 0.649 0.663 98.672 0.016 0.0
train-cgm-383.jpgy 0.004 0.0 99.996 0.0 0.0
train-cgm-747 jpg 0.003 0.002 99.995 0.0 0.0
train-cmd-749 jpg 0.002 0.001 0.0 99.997] 0.0
train-cmd-5.jpg 0.006 0.0 0.0 99.993] 0.001

Searched predictions

Cassava Leaf Disease

All Predictions Predict All Predictions

All Predictions in Percentages

FileName

[cob

| Filter |

FILENAME CBB CBSD CGM CMD HEALTHY
train-chb-298.jpg 0.014 0.922 98.799 0.004] 0.261
train-chbb-317 jpg 0.085 0.002 0.002 0.0 | 99.911
train-cbb-287.jpg 0.213 99.78 0.006 0.0 | 0.001
train-cbb-334.jpg 99.942 0.037 0.002 0.0 | 0.019
train-chb-433.jpg 99.998 0.0 0.001 0.0 | 0.001
train-chb-7 jpg 100.0 0.0 0.0 00| 00

train-chb-423.jpg 55.71 44.046 0.241 0.001] 0.002
train-chbb-327 jpg 97.776 2223 0.0 0.0 0.0
train-cbb-297.jpg 100.0 0.0 0.0 0.0 0.0
train-cbb-413.jpg 100.0 0.0 0.0 0.0 0.0
train-chbb-307 jpg 57.384 42.572 0.002 0.0 | 0.042
train-chb-378.jpg 99.933 0.061 0.004 0.001] 0.001

Architecture

The solution would be implemented as web application which is also mobile enabled. The farmers can
access this application anywhere and can upload the images to detect the disease in the cassava
leaves.

1. Flask is used as Ul
2. The application is deployed as a Container App
3. Azure Custom Vision APl used to detect the Cassava leaf diseases
4. Azure Container Registry used to store the container images
5. The secrets required for the solution are stored in Azure Key Vault
6. The Azure Container App uses Managed Identity
7. The integration of Azure Container App with GitHub Actions is used for CD[Continuous
Deployment]
8. The images are stored in the Azure Blob Storage
9. The predictions obtained from the Azure Custom Vision API are stored in Cosmos DB.
=
Azure Key Vault n
Azure Blob Storage
GitHub Actions
e ®
£ o 0
l Azure Container Registry \._/Azure Container
Apps
Cosmos DB
O : ¥ ’J
Azure Custom Vision APl
Azure Log
el Analytics
- - Workspace
Data Flow

1. The image is uploaded into the Container App through the Flask Ul
2. The Container App

a. uploads the image into Azure Blob Storage

b. _predicts the disease through the Azure Custom Vision API

c. saves the filename and the predictions in Cosmos DB

Technical Details and Implementation
of solution

The various components of the solution are
1. Custom Vision Al project for training the Cassava leaves
2. Deployment of the Container App
3. Configure the Container App for interaction with the
a. Storage Account
b. KeyVault
c. CosmosDB
d. GitHub Actions
4. Code walkthrough

Custom Vision Al Project
1.Create a Custom Vision Al project

Navigate to https://www.customvision.ai/projects to create a custom vision project.
We created a project with
Name - cassava

Project Type - Classification. Since we are classifying whether the image is having
cbb,cbsd,cgm,cmd and healthy disease

Classification Type - Multiclass. There are 2 choices here, Multiclass and Multilabel. We choose
Multiclass since the image is associated with only one class .A single image is not associated with
multiple classes. If a single image was associated with multiple classes, then we had to choose the
Classification type as Multilabel.

https://www.customvision.ai/projects

Create new project X

MName*

Cassava

Description

Cassava

Resource™ create new

cassava [50] b

Manage Resource Permissions

Project Types @
(®) Classification
() Object Detection

Classification Types @

() Multilabel (Multiple tags per image)
(®) Multiclass (Single tag per image)

Domains:

(®) General [A2]

() General [A1]

() General

() Food

() Landmarks

O Retail

() General (compact) [51]
() General (compact)
() Food {compact)

() Landmarks (compact)
() Retail {compact)

Pick the domain closest to your scenario. Compact domains are lightweight models
that can be exported to i0S/android and other platforms. Learn More

3

2.Add Images

We upload the cbb images and also tag them. We upload the other images in the same way.

Image upload X
O

Add Tags Uploading Summary

105 images will be added...

Add some tags to this batch of images...
My Tags
cbb

Upload 105 files

3.Train the images

We train the images by clicking the Train button in the portal

Training Images Performance Predictions ‘ ~ Quick Test F3ox]

https://res.cloudinary.com/practicaldev/image/fetch/s--_KDF2JfQ--/c_limit%2Cf_auto%2Cfl_progressive%2Cq_auto%2Cw_880/https:/dev-to-uploads.s3.amazonaws.com/uploads/articles/a6lacyv76ex6pqrr7bkq.png

4.Training

Select Quick Training or Advanced Training for training the images

Choose Training Type X

Training Types ®
(® Quick Training
(O Advanced Training

Est. Minimum Budget: 1 hour

Choose Quick Training and the results are shown below

[teration 1

Finished training on 10/22/2022, 11:51:16 AM using General [A2] domain
lteration id: 769c8daa-9cdb-4827-abfa-35292bffd0a7
Classification type: Multiclass (Single tag per image)

Precision ® Recall ® AP®

' 81.3% ' 70.5% ' ‘ 77.6% '

We chose Advanced Training to train the images.

Choose Training Type X

Training Types @
(O Quick Training
(® Advanced Training

In most cases, the more time you select the better the model will be. You're charged
based on the compute time used to train your model, so choose your budget based
on your need.

Training budget: 3 hours @
1 hour | | | 96 hours

-9

[] Send me an email notification after training completes

Est. Minimum Budget: 1 hour

This is the output of the Advanced Training with a training budget of 3 hours. This provides much
better accuracy compared to the Quick training as demonstrated in the picture below

https://res.cloudinary.com/practicaldev/image/fetch/s--k_YNwiBL--/c_limit%2Cf_auto%2Cfl_progressive%2Cq_auto%2Cw_880/https:/dev-to-uploads.s3.amazonaws.com/uploads/articles/80flotqb852xlpk8ficu.png

Iteration 2

Finished training on 10/22/2022, 1:20:12 PM using General [A2] domain
Iteration id: 51fdfb39-8ca6-4d60-b55a-02bb78df0418
Classification type: Multiclass (Single tag per image)

Precision ® Recall ® AP®

‘ 81.0% ’ ‘ 81.0% '

Performance Per Tag

Tag Precision A Recall AP Image count

cmd 90.5% 90.5% 96.7% 105 I

chsd 81.8% 85.7% 96.9% 105 I

cbb 80.0% 57.1% 78.5% 105 I

cgm 77.3% 81.0% 86.2% 105 I

healthy 76.0% 90.5% 76.5% 105 I
5.Publish

Publish the model so that we can use the endpoint of the model for the prediction of unseen images.

Publish Model X

We only support publishing to a prediction resource in the same region as the training
resource the project resides in.

Please check if you have a prediction resource and if the prediction resource is in the
same region as the training resource.

Model name

cassava-prediction

Prediction resource

cassava b

Azure Cognitive project which has the project id, the published endpoint is shown below. This will
be used for predicting the unseen test images.

6.Project details

Project Settings Settings

General Resources:

Project Name*

cassava Cassava
Subscription: Visual Studio Enterprise Subscription
Project Id R .
esource GTOUP. cassava
81018b3b-8844-44ae-abfb-f22ded7ddced Resource Kind: All Cognitive Services
Description Key:
cassava 4a9edfe56dfadf32a29a0c95f1c53a2e
Endpoint:
% https://eastus.api.cognitive.microsoft.com/

Deployment of the Container App

Deploy the application as a Container App. The detail instructions are in.[
https://github.com/ambarishg/cassava-disease-detection/blob/master/docs/02-AzureContainerAppsSt
eps.md]

We turn the Managed Identity [System Assigned] on for the Container App. This setting will be
used to access the Storage Account and the Key Vault

Home > cassavaflaskapp

cassavaflaskapp | Identity

v Container App

O Search ‘ «

&~ Liagnose and solve problems

System assigned User assigned

F Y

. A system assigned managed identity is restrictec
Settings RBAC). The managed identity is authenticated wit

4t Authentication

O Refresh ,0'?
[Secrets

%> Ingress)
Status ()

@ Continuous deployment [:‘ Off]

= - _.__

Interaction of Container App with Storage Account

When the file is upload from the user interface, the container app uploads the file into the
container of the storage account.

The Managed identity of the Container App is provided the role of the Storage Blob Data
Contributor so that it can read, write , delete files from the container.

Home > cassavaflaskapp | Identity >

Azure role assignments

-+ Add role assignment (Preview) O Refresh

If this identity has role assignments that you don't have permission to read, they won't be sl

Subscription *

Visual Studio Enterprise Subscription (6ea869be-bab3-4204-94c3-1fc677f7d2de)

Role Resource Mame

Storage Blob Data Contributor = stgcassava

Configure scaling in Container Apps

Home > cassavaflaskapp | Containers >

Create and deploy new revision

Container Scale

Scale rule setting

Control automatic scaling by setting the range of application replicas that'll be deployed in response to a trigger event. Use
scale rules to determine the type of events that trigger scaling.

Min / max replicas * () | 0 | O_o | 10 |

Scale rule

- Add

KeyVault name is stored as an environment variable secret in Container App

Home > cassavaflaskapp

cassavaflaskapp | Secrets

Container App

|,O Search ‘ &«

Add) Refresh ,Q: Send us your feedback
| ; ¥
ﬁ Diagnose and solve problems

Secrets are key/value pairs than can be used to protect sen
Settings store here will be valid across all your revisions. Note that ¢

& Authentication

Key 1
[l sSecrets

cassavaflaskacrazurecrio-cassavaflaskacr
> Ingress

, kvname-secret
@ Continuous deployment

Interaction of Container App and the KeyVault
We put the following components as secrets in the KeyVault

Solution Component Solution Element

Custom Vision API prediction key , endpoint , project id and the
publish iteration name

Storage Account Storage account ,container

CosmosDB CosmosDB account and the key

Home > cassavakv01

cassavakvO1 | Secrets

Key vault
‘/O Search ‘ « - Generate/Import () Refresh T Restore Backup ¢/> View sample code Va Manage deleted secrets
@ overview
Name Type Status
E Activity log
endpoint ~ Enabled
A Access control (IAM)
predictionkey + Enabled
¢ Tags
projectid ~ Enabled
¥ Diagnose and solve problems
publishiterationname + Enabled
Access policies
trainingkey ~ Enabled
Events
Objects
Keys
A secrets

The Managed identity of Container App has access to read the secrets from the Key Vault using the
Access Policies

Home > cassavakv01

+— cassavakvO1 | Access policies
v Key vault
‘ﬁ Search ‘ « -+ Create O Refresh
@ Overview
Access policies enable you to have fine grained control over access to vault items. Learn more
& Activity log
‘P Search Permissions : All X Type: All X
p;{ Access control (IAM) -
® o Showing 1 to 2 of 2 records.
[Name 1 Email T Key Permissions Secret Permissions

&2 Diagnose and solve problems

' APPLICATION
Access policies

D cassavaflaskapp Get, List, Set, Delete, Recover, Backup,..
Events

Cosmos DB configuration

A Cosmos DB account [agcosmos] , database[predictions] and container[predictions] is created for
storing the predictions. The partition used is /category which is currently “cassava”. When the
application is extended to other leaf diseases, it can be other leaves.

* Database id (i)

@ Create new (O Use existing

predictions

Share throughput across containers (i)

* Database throughput (autoscale) (7)
@® Autoscale (O Manual
Estimate your required RU/s with capacity calculator.

Database Max RU/s (0

1000

Your database throughput will automatically scale from 100
RU/s (10% of max RU/s) - 1000 RU/s based on usage.

Estimated monthly cost (USD) (3): $8.76 - $87.60 {1 region, 100
- 1000 RU/s, $0.00012/RU}

* Container id ()

predictions

* Partition key (i)

For small workloads, the item |D is a suitable choice for the
partition key.

fcategory

Unique keys (0
-|— Add unique key

Analytical store (3)

On Off

Azure Synapse Link is required for creating an analytical stare
container. Enable Synapse Link for this Cosmos DB account.
Learn more

> Advanced

GitHub Actions

The Container App is also integrated with GitHub Actions for Continuous deployment

Home > cassavaflaskapp

b cassavaflaskapp | Continuous deployment

Container App

|)3 Search | «

() Refresh 2 Send us your feedback
M Overview

. @ You're currently deploying to your app automatically using GitHub Actions.
fR Access control (IAM) disconnect continuous deployment.

6 Tags

Setup GitHub Actions to automatically build and deploy your cede to your C

2 Diagnose and solve problems .
a new revision.

Settings GitHub settings
ol A H H . .
ab Authentication Signed in as ambarishg
[secrets L
Organization ambarishg
> Ingress
Repository cassava-disease-detection
& Continuous deployment
. . Branch master®
Custom domains
& Dapr Workflow file .github/workflows =
Identity
B corvico FAnnac ter (mra iy

Code walkthrough using the Flask Ul , Storage Account , KeyVault, Azure

Custom Vision APl and CosmosDB
We get the KeyVault name from the environment variable of the Container App

keyVaultName = os_environ["kvname"]

KVUr = https-//{keyVaultName} vault.azure_net"

We put the prediction key , endpoint , project id and the publish iteration name in the KeyVault. We
access the secrets from the KeyVault using the Managed Identity.

credential = ManagedldentityCredential()

client = SecretClient(vault_url=KVUri, credential=credential)
ENDPOINT = client.get_secret("endpoint").value
prediction_key = client.get_secret("predictionkey").value
prediction_resource_id = "paddy"

project_id = client.get_secret("projectid").value
publish_iteration_name = client.get_secret("publishiterationname").value
Code shows of how we upload the file into Azure Blob Storage

if uploaded_file None:

local_file_name = uploaded_file.name

bytes _data = uploaded_file.getvalue()
blob_service client = BlobServiceClient(account_url,
credential=credential)

blob_client = blob_service_client.get_blob_client(container=container_name
blob=local_file_name)
blob_client.upload_blob(bytes data)

Code shows of how we are using to predict using the Azure Custom Vision API and also to store the
predictions in Cosmos DB

prediction_credentials = ApiKeyCredentials(in_headers={"Prediction-key": prediction_key})
predictor = CustomVisionPredictionClient(ENDPOINT, prediction_credentials)

results = predictor.classify_image(
project_id, publish_iteration_name, bytes data)

result_dict ={}

result_dict["category"] = "cassava"
result_dict["filename"] = local_file_name
result_dict["id"] = 'cassava_' + str(uuid.uuid4())

st.write("The cassava leaf image predictions are")

for prediction in results.predictions:
st.write("\t" + prediction.tag_name
": {0:.2f}%".format(prediction.probability * 100))
result_dict[prediction.tag_name] = round(prediction.probability * 100,3)
cosmosdbwithoutasync.create_item(result_dict)

Challenges in implementing the
solution

The solution makes use of several Azure services such as Azure Container Apps, Azure Custom
Vision, Cosmos DB, Key Vault , Managed Identity, Storage Account. Integrating it required
considerable planning. The seamless integration between the Azure services helped to make the
implementation easier.

Business Benefit

Cassava is a very important crop for the developing nations since it provides a rich source of
carbohydrates. The solution presently would help the farmers to predict Cassava diseases and take
preventive actions for increased crop yield. The solution is built using scalable Azure services
and can be extended to other crops such as tomato, potatoes and many others.

GitHub Link

https:/Ilgithub.com/ambarishg/cassava-disease-detection

