
Cassava Leaf Disease detection
system using Azure AI ,
Container Apps and Cosmos DB

Problem Statement
We implement a Cassava Leaf Disease detection system.

Cassava is a rich, affordable source of carbohydrates. It can provide more calories per acre of the
crop than cereal grain crops, which makes it a very useful crop in developing nations.

As the 2nd largest provider of carbohydrates in Africa, cassava is a key food security crop grown
by small-holder farmers because it can withstand harsh conditions. At least 80% of small-holder
farmer households in Sub-Saharan Africa grow cassava and viral diseases are major sources of poor
yields.

We have taken 105 images for 5 categories,4 leaf disease categories[cbb,cbsd,cgm,cmd] and a
healthy category. The Cassava Leaf Disease detection system would help the farmers to detect the
disease correctly and take preventive measures for the same.

A successful output for an unseen cbb disease image is shown with 99.93% probability for cbb
diseased leaf

Successful predictions in table format

Searched predictions

Architecture
The solution would be implemented as web application which is also mobile enabled. The farmers can
access this application anywhere and can upload the images to detect the disease in the cassava
leaves.

1. Flask is used as UI
2. The application is deployed as a Container App
3. Azure Custom Vision API used to detect the Cassava leaf diseases
4. Azure Container Registry used to store the container images
5. The secrets required for the solution are stored in Azure Key Vault
6. The Azure Container App uses Managed Identity
7. The integration of Azure Container App with GitHub Actions is used for CD[Continuous

Deployment]
8. The images are stored in the Azure Blob Storage
9. The predictions obtained from the Azure Custom Vision API are stored in Cosmos DB.

Data Flow

1. The image is uploaded into the Container App through the Flask UI
2. The Container App

a. uploads the image into Azure Blob Storage
b. predicts the disease through the Azure Custom Vision API
c. saves the filename and the predictions in Cosmos DB

Technical Details and Implementation
of solution
The various components of the solution are

1. Custom Vision AI project for training the Cassava leaves

2. Deployment of the Container App

3. Configure the Container App for interaction with the

a. Storage Account

b. KeyVault

c. CosmosDB

d. GitHub Actions

4. Code walkthrough

Custom Vision AI Project
1.Create a Custom Vision AI project

Navigate to https://www.customvision.ai/projects to create a custom vision project.

We created a project with

Name - cassava

Project Type - Classification. Since we are classifying whether the image is having
cbb,cbsd,cgm,cmd and healthy disease

Classification Type - Multiclass. There are 2 choices here, Multiclass and Multilabel. We choose
Multiclass since the image is associated with only one class .A single image is not associated with
multiple classes. If a single image was associated with multiple classes, then we had to choose the
Classification type as Multilabel.

https://www.customvision.ai/projects

2.Add Images

We upload the cbb images and also tag them. We upload the other images in the same way.

3.Train the images

We train the images by clicking the Train button in the portal

https://res.cloudinary.com/practicaldev/image/fetch/s--_KDF2JfQ--/c_limit%2Cf_auto%2Cfl_progressive%2Cq_auto%2Cw_880/https:/dev-to-uploads.s3.amazonaws.com/uploads/articles/a6lacyv76ex6pqrr7bkq.png

4.Training

Select Quick Training or Advanced Training for training the images

Choose Quick Training and the results are shown below

We chose Advanced Training to train the images.

This is the output of the Advanced Training with a training budget of 3 hours. This provides much
better accuracy compared to the Quick training as demonstrated in the picture below

https://res.cloudinary.com/practicaldev/image/fetch/s--k_YNwiBL--/c_limit%2Cf_auto%2Cfl_progressive%2Cq_auto%2Cw_880/https:/dev-to-uploads.s3.amazonaws.com/uploads/articles/80flotqb852xlpk8ficu.png

5.Publish

Publish the model so that we can use the endpoint of the model for the prediction of unseen images.

6.Project details

Azure Cognitive project which has the project id, the published endpoint is shown below. This will
be used for predicting the unseen test images.

Deployment of the Container App
Deploy the application as a Container App. The detail instructions are in.[
https://github.com/ambarishg/cassava-disease-detection/blob/master/docs/02-AzureContainerAppsSt
eps.md]

We turn the Managed Identity [System Assigned] on for the Container App. This setting will be
used to access the Storage Account and the Key Vault

Interaction of Container App with Storage Account

When the file is upload from the user interface, the container app uploads the file into the
container of the storage account.

The Managed identity of the Container App is provided the role of the Storage Blob Data
Contributor so that it can read, write , delete files from the container.

Configure scaling in Container Apps

KeyVault name is stored as an environment variable secret in Container App

Interaction of Container App and the KeyVault
We put the following components as secrets in the KeyVault

Solution Component Solution Element

Custom Vision API prediction key , endpoint , project id and the
publish iteration name

Storage Account Storage account ,container

CosmosDB CosmosDB account and the key

The Managed identity of Container App has access to read the secrets from the Key Vault using the
Access Policies

Cosmos DB configuration

A Cosmos DB account [agcosmos] , database[predictions] and container[predictions] is created for
storing the predictions. The partition used is /category which is currently “cassava”. When the
application is extended to other leaf diseases, it can be other leaves.

GitHub Actions
The Container App is also integrated with GitHub Actions for Continuous deployment

Code walkthrough using the Flask UI , Storage Account , KeyVault, Azure
Custom Vision API and CosmosDB
We get the KeyVault name from the environment variable of the Container App

We put the prediction key , endpoint , project id and the publish iteration name in the KeyVault. We
access the secrets from the KeyVault using the Managed Identity.

credential = ManagedIdentityCredential()
client = SecretClient(vault_url=KVUri, credential=credential)
ENDPOINT = client.get_secret("endpoint").value
prediction_key = client.get_secret("predictionkey").value
prediction_resource_id = "paddy"
project_id = client.get_secret("projectid").value
publish_iteration_name = client.get_secret("publishiterationname").value
Code shows of how we upload the file into Azure Blob Storage

if uploaded_file is not None:

 local_file_name = uploaded_file.name
 bytes_data = uploaded_file.getvalue()
 blob_service_client = BlobServiceClient(account_url,
 credential=credential)
 blob_client = blob_service_client.get_blob_client(container=container_name,
 blob=local_file_name)
 blob_client.upload_blob(bytes_data)

Code shows of how we are using to predict using the Azure Custom Vision API and also to store the
predictions in Cosmos DB

 prediction_credentials = ApiKeyCredentials(in_headers={"Prediction-key": prediction_key})
 predictor = CustomVisionPredictionClient(ENDPOINT, prediction_credentials)

 results = predictor.classify_image(
 project_id, publish_iteration_name, bytes_data)

 result_dict ={}
 result_dict["category"] = "cassava"
 result_dict["filename"] = local_file_name
 result_dict["id"] = 'cassava_' + str(uuid.uuid4())

 st.write("The cassava leaf image predictions are")
 # Display the results.
 for prediction in results.predictions:
 st.write("\t" + prediction.tag_name +
 ": {0:.2f}%".format(prediction.probability * 100))
 result_dict[prediction.tag_name] = round(prediction.probability * 100,3)

cosmosdbwithoutasync.create_item(result_dict)

Challenges in implementing the
solution
The solution makes use of several Azure services such as Azure Container Apps, Azure Custom
Vision, Cosmos DB, Key Vault , Managed Identity, Storage Account. Integrating it required
considerable planning. The seamless integration between the Azure services helped to make the
implementation easier.

Business Benefit
Cassava is a very important crop for the developing nations since it provides a rich source of
carbohydrates. The solution presently would help the farmers to predict Cassava diseases and take
preventive actions for increased crop yield. The solution is built using scalable Azure services
and can be extended to other crops such as tomato, potatoes and many others.

GitHub Link
https://github.com/ambarishg/cassava-disease-detection

